Перевод: со всех языков на английский

с английского на все языки

this phenomenon is mainly seen

  • 1 observer

    observer [ɔpsεʀve]
    ➭ TABLE 1
    1. transitive verb
    to observe ; [+ adversaire, proie] to watch ; (au microscope) to examine
    se sentant observée, elle s'est retournée feeling she was being watched, she turned round
    faire observer que... to observe that...
    « vous êtes en retard » observa-t-il "you're late", he observed
    2. reflexive verb
       b. [maladie, phénomène] to occur
    * * *
    ɔpsɛʀve
    1.
    1) ( regarder) gén to observe; to watch [personne, mouvement]

    observer quelque chose au microscopelit to examine something under a microscope; fig to scrutinize something

    2) ( remarquer) to notice, to observe [chose, phénomène, réaction]
    3) ( suivre) to observe [règle, usage, repos, traité]; to keep, to observe [jeûne]; to keep to [régime]; to maintain [stratégie, politique, grève]

    observer le silenceto keep ou remain quiet

    4) ( contrôler) to watch [propos, manières, gestes]

    2.
    s'observer verbe pronominal
    1) ( se regarder) to watch each other
    2) ( se surveiller) to keep a check on oneself
    * * *
    ɔpsɛʀve vt
    1) (= regarder) to watch

    Il observait les canards sur le lac. — He watched the ducks on the lake.

    2) (attentivement, dans un but scientifique ou par curiosité) to observe
    3) [règlement] to observe, [jeûne] to keep, to observe

    Ils observent le règlement. — They observe the rules.

    4) (= remarquer) to observe

    on observe que... — we note that...

    5) (= dire) to observe

    ... observa-t-il —... he observed

    * * *
    observer verb table: aimer
    A vtr
    1 ( regarder) to watch, to observe [personne, mouvement, adversaire]; to observe [phénomène, situation]; se sentir observé to feel one is being watched; observer qch au microscope lit to examine sth under a microscope; fig to scrutinize sth;
    2 ( remarquer) to notice, to observe [chose, phénomène, réaction]; ‘la situation s'aggrave,’ observa-t-il ‘the situation is worsening,’ he observed; faire observer qch à qn to point sth out to sb;
    3 ( suivre) to observe [règle, usage, repos]; to observe, to abide by [trêve, traité]; to keep, to observe [jeûne, régime]; to maintain [stratégie, politique]; to observe, to maintain [grève]; observer le silence to keep ou remain quiet; observer une minute de silence to observe a minute's silence;
    4 ( contrôler) to watch [propos, manières, gestes].
    B s'observer vpr
    1 ( se regarder) [personnes, armées, ennemis] to watch each other, to observe each other;
    2 ( se surveiller) to keep a check on oneself; s'observer beaucoup to keep a close check on oneself.
    [ɔpsɛrve] verbe transitif
    1. [examiner] to observe, to examine
    2. [surveiller] to watch, to keep a watch ou an eye on
    attention, on nous observe careful, we're being watched
    observer quelqu'un avec attention/du coin de l'œil to watch somebody attentively/out of the corner of one's eye
    3. [respecter - trêve] to observe ; [ - accord] to observe, to respect, to abide by
    observer le sabbat to observe ou to keep the Sabbath
    observer le code de la route to observe ou to follow the highway code
    4. [conserver]
    observer une attitude digne to maintain ou to keep a dignified attitude
    observer la plus stricte neutralité to observe ou to maintain the strictest neutrality
    5. [constater] to observe, to notice, to note
    tu ne portes plus d'alliance, observa-t-il you're not wearing a wedding ring any more, he observed ou remarked
    ————————
    s'observer verbe pronominal (emploi réfléchi)
    ————————
    s'observer verbe pronominal
    (emploi réciproque) to observe ou to watch each other
    ————————
    s'observer verbe pronominal (emploi passif)
    to be seen ou observed

    Dictionnaire Français-Anglais > observer

  • 2 глава

    (см. также абзац, параграф, книга, обзор) chapter
    Более прямой метод получения величины F рассматривается в главе 9. - A more direct procedure for obtaining F is considered in Chapter 9.
    Большая часть материала, представленного в данной главе, имела дело с... - Much of the material presented in this chapter has dealt with...
    В дальнейших главах излагается методология для... - The following chapters outline the methodology involved in...
    В данной главе мы будем заниматься подобными процессами. - This chapter will be concerned with such processes.
    В данной главе мы будем рассматривать лишь... - In this chapter we shall be concerned only with...
    В данной главе мы заложим теоретические основания для... - In this chapter we lay the theoretical foundations for...
    В данной главе мы предлагаем обсудить... - In this chapter we propose to discuss...
    В данной главе мы представим некоторые избранные материалы... - In the present chapter we shall give a selection of...
    В данной главе мы продолжим наше изучение (проблемы и т. п.)... - In this chapter, we will continue our study of...
    В данной главе мы разовьем теорию... - In this chapter we shall develop the theory of...
    В данной главе мы рассмотрим путь, которым... - In this chapter, we consider the way in which...
    В данной главе мы сформулируем метод для... - In this chapter, we shall formulate the procedure for...
    В данной главе мы уделим некоторое внимание (чвму-л)... - In this chapter we shall devote some attention to...
    В данной главе мы, главным образом, интересуемся... - We are concerned mainly in this chapter with...
    В данной главе позднее станет очевидно, что... - It will become evident later in this chapter that...
    В данной главе рассматривается... - It is the object of the present chapter to...
    В данной главе рассматривается еще один подход... - This chapter is concerned with yet another approach to...
    В предшествующих главах мы видели, что... - We have seen in preceding chapters that...
    В следующей главе мы (еще) вернемся к этому выражению. - We shall return to this expression in the next chapter.
    В следующей главе мы дадим количественное представление... - In the next chapter we give a more quantitative account of...
    В следующей главе мы увидим, что... - We shall see in the next chapter that...
    В следующих четырех главах мы будем рассматривать исключительно... - In the next four chapters we shall be concerned exclusively with...
    В соответствии с методом, намеченным в Главе 1, мы... - In accordance with the method outlined in Chapter 1, we...
    В третьей главе (= В главе 3) мы встретим другое обобщение той же самой основной идеи. - In Chapter 3 we shall meet another generalization of the same basic idea.
    В этой вводной главе мы сделаем обзор... - In this introductory chapter we shall review...
    В этой главе будут описываться два подхода к... - This chapter will describe two approaches to...
    В этой главе мы даем эффективный метод... - In this chapter we give an efficient method for...
    В этой главе мы рассматриваем различные случаи... - In this chapter we consider various cases of...
    В этой главе мы сосредоточимся на (проблеме, вопросе и т. п.)... - In this chapter we concentrate on...
    В этой главе не делалось попыток обсудить очень сложную проблему... -In this chapter no attempt has been made to discuss the very difficult problem of...
    В этой главе основное внимание будет направлено на... - In this chapter we will direct most of the attention toward...
    В этой главе рассматривается... - This chapter is concerned with...
    В этой главе формулируются основные положения... - This chapter provides an outline of...
    Данная глава будет посвящена описанию... - This chapter will be devoted to an exposition of...
    Данная глава начинается с описания... - This chapter begins with a description of...
    Данная глава завершается обсуждением... - The chapter concludes with a discussion of...
    Данная глава, в основном, посвящена объяснению... - This chapter is devoted primarily to explaining...
    Данная методика будет использоваться в последующих главах. - This procedure will be followed in subsequent chapters.
    Заключим данную главу несколькими словами относительно... - We conclude this chapter with a few words on...
    Значительная часть настоящей главы посвящена... - A large proportion of the present chapter is concerned with...
    Из содержания предыдущих глав мы уже знаем, что... - We already know from earlier chapters that...
    Книга состоит из восьми глав. - The book is divided into eight chapters.
    Многие идеи и результаты последней главы могут быть распространены на случай... - Many of the ideas and results of the last chapter can now be extended to the case of...
    Многие идеи, рассматриваемые в данной главе,... - Many of the ideas appearing in this chapter are...
    Мы (еще) вернемся к этой аналогии во второй главе. - We shall return later to this analogy in Chapter 2.
    Мы завершаем данную главу демонстрацией того, что... - We end this section by showing that...
    Мы можем применить некоторые результаты этой главы, чтобы проиллюстрировать... - We may apply some of the results of this chapter to illustrate...
    Мы обсудим этот эффект в другой главе. - We shall discuss this effect in a later chapter.
    Мы откладываем обсуждение этого явления до главы 5. - We defer discussion of this phenomenon until Chapter 5.
    Мы продолжим это (исследование) в главе 4. - We shall go further into this in Chapter 4.
    Мы также уже обсудили эту задачу в главе 2. - We have also discussed this problem in Chapter 2.
    Некоторые дальнейшие замечания могут быть найдены в главе 2. - Some further remarks may be found in Chapter 2.
    Некоторые из этих вопросов будут развиваться в следующей главе. - Some of these points will be developed further in the next chapter.
    Основная часть этой работы была проделана в главе 2. - The bulk of the work was done in Chapter 2.
    Основным вопросом данной главы является... - Our main business in this chapter is to...
    Остальная часть этой главы посвящена... - The rest of the chapter deals with... (
    Первые четыре главы данной книги должны быть доступны... - The first four chapters of this book should be accessible to...
    Всюду в данной главе мы будем предполагать, что... - Throughout this chapter we have assumed that...
    Позднее в этой главе мы узнаем, что... - Later in this chapter we will learn that...
    Пример его (метода) использования уже приведен в Главе 2. - An example of its use has already been given in Chapter 2.
    Рассуждение, приведенное в конце последней главы, показывает, что... - The argument at the end of the last chapter shows that...
    Результаты данной главы позволяют нам... - The results of the present chapter enable us to...
    Строгое обсуждение будет дано в главе 2. - A rigorous discussion will be given in Chapter 2.
    Теперь возвратимся к вопросу, поставленному в начале этой главы. - We now return to the question posed at the beginning of the chapter.
    Целью данной главы является представление... - It is the purpose of this chapter to present...
    Целью данной главы является разработка... - The aim of this chapter is to develop...
    Мы собираемся сделать в этой главе... - What we seek to do in this chapter is to...
    Что такое тензоры объясняется подробно в главе 3. - The subject of tensors is explained at length in Chapter 3.
    Эта глава почти полностью посвящается... - This chapter has been almost wholly concerned with...
    Эта глава представляет один подход к решению... - This chapter presents one approach to the solution of...
    Эта тема будет развиваться в следующей главе. - This subject will be developed in the following chapter.
    Эти данные будут использованы в следующей главе. - This information will be put into use in the next chapter.
    Эти явления обсуждаются в главе 5. - These phenomena are discussed in Chapter 5.
    Это будет темой следующей главы. - This will be the theme of the next chapter.
    Далее это обсуждается в главе 4 в связи с... - This is further discussed in Chapter 4 in conjunction with...
    Это не согласуется с терминологией главы 1. - This is at variance with the terminology of Chapter 1.
    Этот факт был отмечен без доказательства в главе 4. - This fact was noted without proof in Chapter 4.
    Этот эффект будет обсуждаться в главе 2, где будет показано, что... - This effect will be discussed in Chapter 2, where it will be shown that...

    Русско-английский словарь научного общения > глава

  • 3 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

См. также в других словарях:

  • Michael Jackson's This Is It — Not to be confused with This Is It (Michael Jackson concerts), Michael Jackson s This Is It (album), or This Is It (Michael Jackson song). Michael Jackson s This Is It Theatrical release poster …   Wikipedia

  • Narrative of the abduction phenomenon — The narrative of the abduction phenomenon is an alleged core of similarity in contents and chronology underlying various claims of forced temporary abduction of humans by apparently otherworldly beings. Proponents of the abduction phenomenon… …   Wikipedia

  • Perspectives on the abduction phenomenon — Various perspectives on the abduction phenomenon have formed in order to explain the fantastical claims some have made of being forcibly taken and examined by apparently otherworldly beings. The prime differences between these perspectives lie in …   Wikipedia

  • Mud-puddling — swallowtail butterflies, Thailand. Mud puddling is the phenomenon mostly seen in butterflies and involves their aggregation on substrates like wet soil, dung and carrion to obtain nutrients such as salts and amino acids.[1] This behaviour has… …   Wikipedia

  • Topkapı Palace — Infobox Historic building name = Topkapı Palace caption = Topkapı Palace from the Bosphorus map type = latitude = longitude = location town = Istanbul location country = Turkey architect = Mehmed II, Alaüddin, Davud Ağa, Mimar Sinan, Sarkis… …   Wikipedia

  • Inuit — Infobox Ethnic group group=Inuit Inuit grandmother and grandchild, 1995 poptime=150,000Fact|date=September 2007 popplace=Greenland, Canada, United States, Russia rels=Christianity, Shamanism, Animism langs=Inuit language, Eskimo Aleut languages… …   Wikipedia

  • Management systems for road safety — Contents 1 Paradigms 2 National programs 3 Management systems 4 Semantics 5 References …   Wikipedia

  • Neural oscillation — is rhythmic or repetitive neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms localized within individual neurons or by interactions between neurons. In… …   Wikipedia

  • Katakana — Infobox Writing system name=Katakana カタカナ type=Syllabary languages=Japanese, Okinawan and Ainu time= 800 A.D. to the present fam1=Chinese fam2=Oracle Bone Script fam3=Seal Script fam4=Clerical Script fam5=Chinese characters fam6=Kanji fam7=Man… …   Wikipedia

  • KABBALAH — This entry is arranged according to the following outline: introduction general notes terms used for kabbalah the historical development of the kabbalah the early beginnings of mysticism and esotericism apocalyptic esotericism and merkabah… …   Encyclopedia of Judaism

  • ZIONISM — This article is arranged according to the following outline: the word and its meaning forerunners ḤIBBAT ZION ROOTS OF ḤIBBAT ZION background to the emergence of the movement the beginnings of the movement PINSKER S AUTOEMANCIPATION settlement… …   Encyclopedia of Judaism

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»